基於中國餘式定理的影像分享機制
論文分類 | 碩士論文 |
---|---|
學號 | G962013 |
姓名 | 莊竣傑 |
標題 | 基於中國餘式定理的影像分享機制 |
指導教授 | 徐熊健 賴阿福 |
畢業日期 | 2009-07 |
附件檔案 | |
參考連結 | http://163.21.239.2/cgi-bin/cdrfb3/tmtcgsweb.cgi?o=dtmtccdr |
摘要 | 大部分的機密影像分享機制都產生相同大小的分享影像,包含了常被引用的Shamir與Thien-Lin以多項式內插法為基礎的分享機制。本論文利用中國餘式定理設計一個新的影像分享機制,可以產生不同大小的分享影像。分享一個機密影像給n位分享者,我們使用一組事先決定好的n個互質模數,藉著中國餘式定理將秘密影像編碼成n張分享影像,這些分享影像將被分配給n位分享者,其中任何超過r位分享者的群組,都能利用他們的分享影像與模數,完整地還原機密影像,反之,任何少於r位分享者的群組則不能。因為我們所產生的分享影像是由餘數所構成 |
參考文獻 | 1. Asmuth, C., Bloom, J. (1983), A modular approach to key safeguarding. IEEE Transactions on Information Theory, Vol.IT-29, No.2, pp.208–210. 2. Blakley, G.R. (1979), Safeguarding cryptographic keys, in AFIPS Conf. Proc., vol. 48, pp. 313–317 3. Brickell, E.F. (1989), Some ideal secret sharing schemes, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol.6, pp.105–113 4. Chang, C.-C., Hwang, R.-J. (1998), Sharing secret images using shadow codebooks. Information Sciences, Vol.111, NO.1-4, pp.335–345 5. Galibus, T., Matveev, G. (2007), Generalized mignotte’s sequences over polynomial rings. Electr. Notes Theor. Comput. Sci. Vol.186, pp.43–48 6. Hardy, D.W., Walker, C.L. (2003), Applied Algebra: codes, ciphers, and discrete algorithms. Prentice Hall 7. Iftene, S. (2005), Compartmented secret sharing based on the Chinese remainder theorem. Cryptology ePrint Archive 8. Iftene, S. (2006), General secret sharing based on the Chinese remainder theorem. Cryptology ePrint Archive, Report 2006/166 9. Ito, M., Saito, A., Nishizeki, T. (1987), Secret sharing scheme realizing general access structure. Proceedings of IEEE, Globecom Vol.1987, pp. 99–102 10. Li, H.-X., Pang, L.-J., Cai, W.-D. (2007), An efficient threshold multi-group-secret sharing scheme. Advances in Soft Computing Vol.40, pp.911–918 11. Lin, C.-C., Tsai, W.-H. (2004), Secret image sharing with steganography and authentication. Journal of Systems and Software Vol.73, No.3, pp.405–414 12. Meher, P.K., Patra, J.C. (2006), A new approach to secure distributed storage, sharing and dissemination of digital image. Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 373–376 13. Mignotte, M. (1983), How to share a secret. Beth, T. (ed.) EUROCRYPT 1982. LNCS, vol. 149, pp. 371–375. Springer, Heidelberg 14. Shamir, A. (1979), How to share a secret. Communications of the ACM Vol.22, NO.11, pp.612–613 15. Shyu, S.J., Chen, Y.-R. (2008), Threshold Secret image by Chinese Remainder Theorem. Information Privacy and Intelligent Computing Systems(IEEE APSCC 2008 workshop on MPIS-08), pp.1332-1337 16. Stallings, W. (2005), Cryptography and Network Security Principles and Practices, 4th edn. Prentice Hall, Englewood Cliffs 17. Tan, K.J., Zhu, H.W. (1999), General secret sharing scheme. Computer Communications Vol.22, pp.755–757 18. Thien, C.-C., Lin, J.-C. (2002), Secret image sharing. Computers and Graphics Vol.26, pp.765–770 19. Tso, H.-K. (2008),: Sharing secret image using Blakey’s concept. Optical Engineering Vol.47, No.7, 077001 20. Wang, R.Z., Shyu, S.J. (2007), Scalable secret image sharing, Signal Processing: Image Communication Vol. 22, pp. 363-373 |
瀏覽數:
分享