跳到主要內容區塊

基於線性系統之機密分享

論文內容
論文分類 碩士論文
學號 G972104
姓名 林筱旋
標題 基於線性系統之機密分享
指導教授 徐熊健 楊政穎
畢業日期 2010-12
附件檔案  
參考連結 http://163.21.239.2/cgi-bin/cdrfb3/tmtcgsweb.cgi?o=dtmtccdr
摘要 機密分享為一簡單保護機密資訊之方法,自 Blakley 與 Shamir 於 1979 年分別提出實做機制後,機密分享領域備受關注至今。舉例說明,不論是 Shamir 的多項式內插法技巧、Blakley 的有限幾何學應用或 1989 年 Schellenberg 與 Stinson 所提出之組合設計方式,都相當經典且令人玩味。本文針對基於線性碼與線性系統的機密分享,分別探究兩者於門檻存取結構及一般化存取結構下建構機密分享的可行性,所提出的機制中,我們將基於線性碼的 Massey 與 Karnin 之機制一
參考文獻 [1] A. Ashikhmin and A. Barg, “Minimal vectors in linear codes,” IEEE Trans. Inf. Theory, vol. 44, no. 5, 1998, pp. 2010–2017. 
[2] A. Beimel and Y. Ishai, “On the Power of Nonlinear Secret-Sharing”, IEEE Conf. on Computational Complexity, 2001, pp. 188–202. 
[3] A. Canteaut, P. Charpin, and H. Dobbertin, “Weight divisibility of cyclic codes, highly nonlinear functions on GF(2m), and cross correlation of maximum-length sequences,” SIAM J. Discr. Math., vol. 13, 2000, pp. 105–137. 
[4] A. Renvall and C. Ding, “The Access Structure of Some Secret-Sharing Schemes,” in Information Security and Privacy (Lecture Notes in Computer Science). Berlin, Germany: Springer-Verlag, vol. 1172, 1996, pp. 67-78. 
[5] A. Renvall and C. Ding, “A nonlinear secret sharing scheme,” in ACISP: Information Security and Privacy: Australasian Conference, vol. 1172 of Lecture Notes in Computer Science, 1996, pp. 56–66. 
[6] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, 1979, pp. 612–613. 
[7] C. Carlet and C. Ding, “Highly nonlinear mappings,” J. Complexity, vol. 20, no. 2, 2004, pp. 205–244. 
[8] C. Carlet and C. Ding, “Linear Codes From Perfect Nonlinear Mappings and Their Secret Sharing Schemes”, IEEE Trans. Inf. Theory, vol. 51, no. 6, 2005, pp. 2089–2102. 
[9] C. Charnes, J. Pieprzyk and R. Safavi-Naini, “Conditionally secure secret sharing scheme with disenrollment capability,” in 2nd ACM Conference on Computer and Communications Security, ACM Press, 194, pp. 89-95. 
[10] C. Charnes and J. Pieprzyk, “Cumulative arrays and generalized Shamir secret sharing schemes,” in Seventeenth Annual Computer Science Conference (ACSC17), New Zealand (G. Gupta, ed.), Australian Computer Science Communications, vol. 16 of ISBN 0-473-02313-X, ch. Part C, 1994, pp. 519-528. 
[11] C. Ding and J. Yuan, “Covering and Secret Sharing with Linear Codes,” in Discrete Mathematics and Theoretical Computer Science (Lecture Notes in Computer Science). Berlin, Germany: Springer-Verlag, vol. 2731, 2003, pp. 11–25. 
[12] C. L. Liu. Introduction to Combinatorial mathematics. McGraw-Hill, 1968. 
[13] C. S. Laih, L. Harn, and C. C. Chang, “Contemporary. Cryptography and Its Applications,” UNALIS CORPORATION, 2001. 
[14] D. Chen and D. R. Stinson, “Recent results on combinatorial constructions for threshold schemes.” Australas. J. Combin., vol. 1, 1990, pp. 29-48. 
[15] D. R. Stinson, “An explication of secret sharing schemes,” Des., Codes Cryptography., vol. 2, no. 4, 1992, pp. 357–390. 
[16] D. R. Stinton and S. A. Vanstone, “A combinatorial approach to threshold scheme,” Advance in Cryptology-Proceedings Crypto ’87 (C. Pomerrance, ed.), Lecture Notes in Computer Science, vol. 293, Springer-Verlag, Berlin, 1988, pp. 330-339. 
[17] E. Brickell and D. Stinson, “Some Improved Bounds on the Information Rate of Perfect Secret Sharing Schemes,” in Advances in Cryptology-Proceedings of CRYPTO ’90 (A. Menezes and S. Vanstone, eds.), vol. 537 of Lecture Notes in Computer Science, 1991, pp 242-252, Springer-Verlag. also, Journal of Cryptology, vol. 5, no. 3, 1992, pp. 153-166. 
[18] E. D. Karnin, J. W. Greene, and M. E. Hellman. “On secret sharing systems,” IEEE Trans. Inf. Theory, vol. 29, no. 1, 1983, pp. 35–41. 
[19] E. F. Brickell, “Ideal secret sharing schemes,” In Advances in Cryptology- Eurocrypt89 (Lecture Notes in Computer Science), vol. 434, 1990, pp. 468–475. Springer. 
[20] E. F. Brickell and D. M. Davenport, “On the classification of ideal secret sharing schemes,” Journal of Cryptology, vol. 4, no. 2, 1991, pp. 123-134, Springer. 
[21] F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error Correcting Codes,” Amsterdam, The Netherlands: North-Holland, 1978. 
[22] G. R. ,Blakley, “Safeguarding cryptographic keys,” in AFIPS Conf. Proc., vol. 48, 1979, pp. 313-317. 
[23] G. R. Blakley and G. A. Kabatianskii, “Linear algebra approach to secret sharing schemes,” in Error Control, Cryptology, and Speech Compression, Selected Papers from Int. Workshop Information Protection (Lecture Notes in Computer Science, vol. 829). Berlin, Germany: Springer-Verlag, 1994, pp. 33–40. 
[24] G. Simmons, “Robust shared secret schemes or How to be sure you have the right answer even through you don’t know the question”, Congr. no. 68, 1989, pp. 215-248. 
[25] G. Simmons, “How to (Really) Share a Secret,” Advances in Cryptology–Proceedings of CRYPTO ’88, vol. 403 of Lecture Notes in Computer Science, 1990, pp. 390-448, Springer-Verlag. 
[26] G. Simmons, “Prepositioned Shared Secret and/or Shared Control Schemes,” in Advances in Cryptology-Proceedings of EUROCRYPT ’89 (J.-J. Quisquater and J. Vandewalle, eds.), vol. 434 of Lecture Notes in Computer Science, 1990, pp. 436-467, Springer-Verlag. 
[27] G. Simmons, W. A. Jackson, and K. Martin, “The geometry of shared secret schemes,” Bull. ICA, vol. 1, 1991, pp. 71-88. 
[28] G. V. Bard, “Algebraic Cryptanalysis,” Springer, 2009, ISBN: 978-0387887562. 
[29] H. Chen and R. Kramer, “Algebraic geometric secret sharing schemes and secure multi-party computations over small fields,” In CRYPTO 2006, 2006, pp. 521-536. Springer-Verlag. 
[30] Hakan O¨zadam, Ferruh O¨ zbudak and Zu¨lfu¨kar Saygı, “Secret Sharing Schemes and Linear Codes,” Information Security and Cryptology Conference with International Participation, 2007. 
[31] H. Yamamoto, “On secret sharing systems using (k, L, n) threshold schemes,” Trans. IECE Japan J68-A, 1985, pp. 945-952. 
[32] J. Benaloh and J. Leichter, “Generalized Secret Sharing and Monotone Functions,” in Advances in Cryptology-Proceedings of CRYPTO ’88 (S. Goldwasser, ed.), vol. 403 of Lecture Notes in Computer Science, 1990, pp 27-35, Springer-Verlag. 
[33] J. L. Massey, “Minimal codewords and secret sharing,” in Proc. 6th Joint Swedish–Russian Workshop on Information Theory, 1993, pp. 246–249. 
[34] J. L. Massey, “Some applications of coding theory,” Cryptography, codes and Ciphers: Cryptography and Coding IV, 1995, pp. 33–47. 
[35] J. L. Massey, “Three Coding Problems,” Report in Trondhjemsgade 3, 2TH DK-2100 Copenhagen, Denmark 2009. 
[36] J. Pieprzyk, and X. M. Zhang, “Ideal Threshold Schemes from MDS Codes,” Discrete Mathematics and Theoretical Computer Science, vol. 6, no. 2, 2004, pp. 471–482. 
[37] J. Yuan and C. Ding, “Secret sharing schemes from two-weight codes,” The Bose Centenary Symposium on Discrete Mathematics and Applications, Kolkata, Dec 2002. 
[38] J. Yuan and C. Ding, “Secret sharing schemes from three classes of linear codes,” IEEE Trans. Inf. Theory, vol. 52, no. 1, 2006, pp. 206–212. 
[39] K. J. Tan and H. W. Zhu, “General secret sharing scheme,” Computer Communications, vol.22, 1999, pp. 755– 757. 
[40] K. M. Martin, “New secret sharing schemes from old,” Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 14, 1993, pp. 65-77. 
[41] K. Okada and K. Kurosawa, “MDS secret sharing scheme secure against cheaters,” IEEE Trans. Inf. Theory, vol. 46, no. 3, 2000, pp. 1078-1081. 
[42] M. Ito, A. Saito and T. Nishizeki, “Secret sharing scheme realizing general access structure,” in Proceedings IEEE Global Telecommun. Conf., Glbecom ’87 Washington, 1987, pp.99–102, IEEE Communications Soc. Press. 
[43] Marten van Dijk, “A Linear Construction of Perfect Secret Sharing Schemes,” Proc. of Eurocrypt’94, Lecture Notes in Computer Science, Springer-Verlag, Berlin, vol. 950, 1995, pp. 23–34. 
[44] Marten van Dijk, “On the information rate of perfect secret sharing schemes,” Designs, Codes, and Cryptography, Vol. 6, 1995, pp. 143–169. 
[45] Marten van Dijk, W. A. Jackson, and K. M. Martin, “A duality theorem for incomplete secret sharing schemes,” Bulletin of the Institute of Combinatorics and its Application, Vol. 19, 1997, pp. 93–101. 
[46] Marten van Dijk, W. A. Jackson, and K. M. Martin, “A general decomposition construction for incomplete secret sharing schemes,” submitted to Designs, Codes and Cryptography, 1995. 
[47] P. J. Schellenberg and D. R. Stinson, “Threshold schemes from combinatorial designs,” Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 5, no. 4, 1989, pp. 143-160 
[48] R. Anderson, C. Ding, T. Helleseth, and T. Klove, “How to build robust shared control systems,” Designs, Codes and Cryptography, vol. 15, 1998, pp. 111–124. 
[49] R. J. McEliece and D. V. Sarwate, “On sharing secrets and Reed-Solomon codes,” Comm. ACM, Vol. 24, 1981, pp. 583-584. 
[50] R. Lidl and H. Niederreiter, “Finite Fields,” Cambridge, U.K.: Cambridge Univ. Press, 1997. 
[51] T. Tassa and J. L. Villar, “On proper secrets, (t, k)-bases and linear codes,” Designs, Codes and Cryptography, vol. 52, no. 2, 2009, pp. 129-154, Springer. 
[52] T. Shifrin and M. Adams, “Linear Algebra: A Geometric Approach,” W. H. Freeman and Company 2009, ISBN: 978-1429215213. 
[53] T. Xiaoqing and W. Zhiguo. “New secret sharing scheme based on linear code.,” Applied Mathematics - A Journal of Chinese Universities, vol. 19, no. 2, 2004, pp. 160–166. 
[54] W. A. Jackson and K. Martin, “Cumulative Arrays and Geometric Secret Sharing Schemes,” in Advances in Cryptology-Proceedings of AUSCRYPT ’92 (J. Seberry and Y. Zheng, eds.), vol. 718 of Lecture Notes in Computer Science, 1993, pp. 48-55, Springer-Verlag. 
[55] W. A. Jackson and K. Martin, “Geometric secret sharing schemes and their duals,” Designs, Codes and Cryptography, vol. 4, 1994, pp. 83–95. 
[56] W. A. Jackson and K. M. Martin, “Perfect secret sharing schemes on five participants,” to appear in Designs, Codes and Cryptography. 
[57] Y. Zheng, T. Hardjono and J. Seberry, “Reusing shares in secret sharing schemes,” The Computer Journal, vol. 37, 1994, pp. 199-205. 
[58] 趙啟超。數學傳播,十八卷四期。民 83 年 12 月 

 

瀏覽數  
將此文章推薦給親友
請輸入此驗證碼